# ePCA: High Dimensional Exponential Family Principal Component Analysis

Lydia T. Liu '17

ORFE/PACM, Princeton University

April 20, 2017

Joint work with Edgar Dobriban and Amit Singer

1/35

### Overview

#### Introduction

Review of PCA The *e*PCA problem

#### The ePCA method

Overview Diagonal Debiasing Homogenization Shrinkage Heterogenization and Scaling Denoising

#### Illustration with X-ray molecular imaging

Experiments on simulated XFEL data

Software

# Principal Component Analysis (PCA)

- PCA: useful tool for dimensionality reduction and data analysis
- Data X: n × p matrix (n samples from p-dimensional population)
- PC's: linear combinations of features explaining the most variance

3/35

- eigenvectors of sample covariance matrix  $\hat{\Sigma}_n = \frac{1}{n} X^\top X$
- corresponding eigenvalue  $\lambda_i$  is variance of  $PC_i$

PCA in classical vs. high-dimensional regimes

Classical setting: p fixed,  $n \to \infty$ 

•  $\hat{\Sigma}_n \rightarrow \Sigma$  by the law of large numbers

High dimensional setting:  $p/n = \gamma \in (0,\infty), p \to \infty, n \to \infty$ 

- Classical asymptotics don't apply. Original PCA is inconsistent!
- Limiting spectrum: Marchenko-Pastur (MP) distribution (Marchenko and Pastur 1967)
- Acute need to shrink empirical eigenvalues (Donoho et al. 2013)

# Motivating example for ePCA: XFEL



(a) 3D structure of a (b) XFEL imaging process (Gaffney and Chapman lysozyme 2007)

Figure: X-ray free electron laser (XFEL) molecular imaging

## Demo of ePCA on XFEL images



6/35

## PCA for the exponential family

In many applications  $X_{ij}$ 's have an exponential family distribution

- SNPs: Binomial
- RNA-seq: Negative Binomial
- XFEL/photon-limited imaging: low-intensity Poisson

Single-parameter exponential family distributions

Has density of the form  $f_{\theta}(y) = \exp \theta y - A(\theta)$ .

No commonly agreed upon version of PCA for non-Gaussian data (Jolliffe 2002)

## A new method: ePCA

#### Deterministic 4-step algorithm using moments and shrinkage

Advantages compared to previous proposals

- Likelihood/generalized linear latent variable models (Collins et al. 2001; Knott and Bartholomew 1999; Udell et al. 2016)
  - lack of global convergence guarantees

 Gaussianizing transforms: wavelet, Anscombe (Anscombe 1948; Starck et al. 2010)

8 / 35

unsuitable for low-intensity

### Problem formulation

#### Sampling model for Poisson

• Each p-dim latent vector is drawn i.i.d. from distribution D

$$(X(1), \cdots, X(p))^{\top} = X \sim D(\mu, \mathbf{\Sigma})$$

— e.g., the noiseless image.  $\mu$  and  $\pmb{\Sigma}$  are the mean and covariance of D.

- ▶ Observations  $Y_i \sim Y \in \mathbb{R}^p$  e.g., the noisy image
- Model for Y: draw latent  $X \in \mathbb{R}^{p}$ , then

 $Y = (Y(1), \cdots, Y(p))^{\top}$  where  $Y(j) \sim Poisson(X(j))$ 

**Goal**: Recover information about the original distribution D, i.e. **\Sigma**. Recover X.

#### Problem formulation

#### Sampling model for Exponential family

One-parameter exponential family with density

$$f_{\theta}(y) = \exp \theta y - A(\theta)$$

Natural parameter  $\theta$ ,  $\mathbb{E}[y] = A'(\theta)$ ,  $Var[y] = A''(\theta)$ 

- Observations  $Y_i \sim Y \in \mathbb{R}^p$
- Model for Y: draw latent  $\boldsymbol{\theta} \in \mathbb{R}^p$ , then

$$Y(j) \mid oldsymbol{ heta}(j) \sim f_{oldsymbol{ heta}(j)}(y), \ Y = (Y(1), \cdots, Y(p))^{ op}$$

**Goal**: Recover  $\Sigma_x := \text{Cov}(A'(\theta))$  and  $X := \mathbb{E}(Y|\theta) = A'(\theta)$ 

#### Mean parameter is low-rank

Mean  $X = \mathbb{E}(Y|\theta)$  has unknown low-dim structure

- $\blacktriangleright$  as opposed to natural parameter  $\pmb{\theta}$
- can leverage Random Matrix Theory  $\Rightarrow$  simple method
- reasonable for image data (Basri and Jacobs 2003)

Our sampling model is realistic

#### **Two applications**

|                 | 1. XFEL images                             | 2. Single cell RNA-seq |  |
|-----------------|--------------------------------------------|------------------------|--|
| Sample la-      | Random 2D intensity                        | Random expression      |  |
| tent vector     | map due to random 3D                       | rate due to biological |  |
| X               | orientation of molecule                    | variation of cells     |  |
| Sample $Y \sim$ | Noisy 2D image Y due                       | Noisy read counts $Y$  |  |
| Poisson(X)      | to low photon count due to technical varia |                        |  |
|                 |                                            | tion                   |  |

ntroduction Review of PCA The ePCA problem

#### The ePCA method

Overview Diagonal Debiasing Homogenization Shrinkage Heterogenization and Scaling Denoising

Illustration with X-ray molecular imaging Experiments on simulated XFEL data

Software

# Summary of ePCA

ePCA can be seen as a sequence of improved covariance estimators

Table: Covariance estimators

| Name               | Formula                                                                                                      | Motivation          |
|--------------------|--------------------------------------------------------------------------------------------------------------|---------------------|
| Sample covariance  | $S = rac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y}) (Y_i - \bar{Y})^{	op}$                                        | -                   |
| Diagonal debiasing | $S_d = S - diag[V(\bar{Y})]$                                                                                 | Hierarchy           |
| Homogenization     | $S_h = D_n^{-1/2} S_d D_n^{-1/2}$                                                                            | Heteroskedasticity  |
| Shrinkage          | $\mathcal{S}_{h,\eta}=\eta(\mathcal{S}_h)$                                                                   | High dimensionality |
| Heterogenization   | $S_{he} = D_n^{1/2} S_{h,\eta} D_n^{1/2}$                                                                    | Heteroskedasticity  |
| Scaling            | $S_{s} = \sum \hat{lpha}_{i} \hat{v}_{i} \hat{v}_{i}^{	op} \; (S_{he} = \sum \hat{v}_{i} \hat{v}_{i}^{	op})$ | Heteroskedasticity  |

Diagonally debiasing the sample covariance

Poisson case:

- Sample Mean  $\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$
- ► Sample Covariance  $S = \frac{1}{n} \sum_{i=1}^{n} (Y_i \overline{Y}_n) (Y_i \overline{Y}_n)^T$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

- But it's inconsistent!  $\mathbb{E}[S] = \mathbf{\Sigma} + \text{diag}[\mu]$
- $D_n := \operatorname{diag}\left(\overline{Y}_n\right)$
- Diagonally debiased covariance  $S_d = S D_n$

Diagonally debiasing the sample covariance

Exponential family:

- $Cov[Y] = Cov[A'(\theta)] + \mathbb{E}diag[A''(\theta)]$  by law of total variance
- Mean-variance map:  $V(y) = A''[(A')^{-1}(y)]$
- $D_n := \operatorname{diag}[V(\overline{Y}_n)]$  estimates  $\operatorname{diag}[A''(\theta)]$

• 
$$S_d = S - D_n$$

Theorem (Convergence of the debiased covariance (Liu et al. 2016))

$$\mathbb{E}[\|\mathcal{S}_d - \boldsymbol{\Sigma}_x\|_F] \lesssim \sqrt{\frac{p}{n}} \left[\sqrt{p} \cdot m_4 + \|\mu\|\right]$$

16 / 35

## Homogenization

► Motivation: Remove the effects of heteroskedasticity ⇒ closer to standard spiked model (Johnstone 2001) + MP law

• 
$$S_h = D_n^{-1/2} S_d D_n^{-1/2} = D_n^{-1/2} S D_n^{-1/2} - I_\mu$$

Different from Standardization (dividing each measurement by its empirical standard deviation)!



(a) Spectrum before homogenization



(b) Spectrum after homogenization with red MP density

イロト イポト イヨト イヨト

## Marchenko-Pastur Law for ePCA

Theorem (Marchenko-Pastur Law (Liu et al. 2016))

- The eigenvalue distribution of S converges a.s. to general MP F<sub>γ,H</sub>.
- The eigenvalue distribution of S<sub>h</sub> + I<sub>p</sub> converges a.s. to the standard MP with aspect ratio γ.

Importance of Homogenization and the MP law

- Use optimal eigenvalue shrinkers for covariance estimation (Donoho et al. 2013; Lee et al. 2010)
- Improves signal strength (Liu et al. 2016)
- Matches Hardy-Weinberg equilibrium normalization (Patterson et al. 2006)

## Eigenvalue shrinkage

- Reduce noise by shrinkage
- $\eta(\cdot)$  scalar shrinker, applied elementwise to eigenvalues:

$$M = V \wedge V^{\top}; \ \eta(M) = V \eta(\Lambda) V^{\top}; \ S_{h,\eta} = \eta(S_h)$$

Optimal shrinkage functions (Donoho et al. 2013)



Figure: Need to Shrink! Spiked model spectrum after homogenization

### Heterogenization

► Homogenized covariance matrix S<sub>h</sub> doesn't estimate the original covariance matrix Σ! ⇒ need to heterogenize by multiplying back the estimated standard errors

Improves eigenvector estimates

$$\triangleright S_{he} = D_n^{1/2} \cdot S_{h,\eta} \cdot D_n^{1/2}$$

# Scaling

Heterogenization induces a bias in the eigenvalues (Liu et al. 2016)

Need for final Scaling step to correct the bias

$$\blacktriangleright S_s = \sum \hat{\alpha}_i \hat{v}_i \hat{v}_i^\top (S_{he} = \sum \hat{v}_i \hat{v}_i^\top)$$

- Scaling function based on assuming a Gaussian spiked model (Baik et al. 2005; Johnstone 2001)
  - we conjecture the literature about phase transition also applies to our model

## Denoising by EBLP

 Use standard strategy Empirical Best Linear Predictor (EBLP) from random effects model (Searle et al. 2009). First we estimate E[A"(θ)] and Σ<sub>x</sub> using ePCA. Then, estimate

$$\hat{X}_i = \hat{\Sigma}_x \left[ \mathsf{diag}[\hat{\mathbb{E}}\mathcal{A}^{\prime\prime}(\theta)] + \hat{\Sigma}_x \right]^{-1} Y_i + \mathsf{diag}[\hat{\mathbb{E}}\mathcal{A}^{\prime\prime}(\theta)] \left[ \mathsf{diag}[\hat{\mathbb{E}}\mathcal{A}^{\prime\prime}(\theta)] + \hat{\Sigma}_x \right]^{-1} \bar{Y}.$$

For the Poisson distribution,

$$\hat{X}_i = S_s \left( \mathsf{diag}[\bar{Y}] + S_s \right)^{-1} \hat{Y}_i + \mathsf{diag}[\bar{Y}] \left( \mathsf{diag}[\bar{Y}] + S_s \right)^{-1} \bar{Y}.$$

#### Introduction

Review of PCA The ePCA problem

#### The ePCA method

Overview Diagonal Debiasing Homogenization Shrinkage Heterogenization and Scaling Denoising

#### Illustration with X-ray molecular imaging Experiments on simulated XFEL data

Software

### Covariance estimation



Figure: Error of covariance matrix estimation: norm of the difference between each successive covariance estimate (Sample, +Debiased, +Heterogenized, +Scaled) and the true covariance  $\Sigma_x$ .

## Eigenvalues



Figure: Error of eigenvalue estimation for the top 5 eigenvalues, measured as percentage error relative to the true eigenvalue

## Eigenvectors



Figure: XFEL Eigenimages for  $\gamma = 1/4$ , ordered by eigenvalue

# Denoising comparison



#### Figure: Sampled reconstructions using the XFEL dataset



Figure: Comparing various methods' sampled reconstructions of the XFEL dataset ePCA took 13.9 seconds, while (Collins et al. 2001)'s exponential family PCA took 10900 seconds, or 3 hours

## Denoising results



Figure: MSE against log10 sample size. Mean over 50 Monte Carlo trials. Purple: PCA. Grey: ePCA (projection only). Green: ePCA +EBLP

### Software

- ePCA is publicly available in an open-source Matlab implementation from github.com/lydiatliu/epca/
- Link to ePCA main function
- e.g. [cov,~,~,~,eigval,eigvec,~,~,~] = exp\_fam\_pca(data,'poisson')

## Summary

- 1. New method *e*PCA for PCA of exponential family data, based on a new covariance estimator.
- 2. Homogenization, shrinkage, heterogenization, and scaling of the debiased covariance matrix improve performance for high-dimensional data. Each step has theoretical justifications.
- Applied ePCA to simulated XFEL data ⇒ reduce the MSE for covariance, eigenvalue, eigenvector estimation.
- 4. Used *e*PCA to develop new denoising method, a form of empirical Best Linear Predictor (EBLP) from random effects models. Demonstrate on simulated XFEL data.

## References I

F. J. Anscombe. "THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA". In: *Biometrika* 35.3-4 (1948), p. 246.

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: *Annals of Probability* 33.5 (2005), pp. 1643–1697.

Ronen Basri and David W Jacobs. "Lambertian Reflectance and Linear Subspaces". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 25.2 (2003), pp. 218–233.

Michael Collins, S Dasgupta, and Re Schapire. "A generalization of principal component analysis to the exponential family". In: Advances in Neural Information Processing Systems (NIPS) (2001).

## References II

DI Donoho, M Gavish, and Im Johnstone. "Optimal shrinkage of eigenvalues in the Spiked Covariance Model". In: *arXiv preprint arXiv:1311.0851* 0906812 (2013), pp. 1–35. arXiv: arXiv:1311.0851v1.

K. J. Gaffney and H. N. Chapman. "Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering". In: Science 316.5830 (2007), pp. 1444–1448. ISSN: 0036-8075. DOI: 10.1126/science.1135923. eprint: http://science.sciencemag.org/content/316/ 5830/1444.full.pdf. URL: http://science. sciencemag.org/content/316/5830/1444.

lain M Johnstone. "On the distribution of the largest eigenvalue in principal components analysis". In: *Annals of Statistics* 29.2 (2001), pp. 295–327.

# References III

- lan Jolliffe. *Principal Component Analysis*. Wiley Online Library, 2002.
- Martin Knott and David J Bartholomew. *Latent* variable models and factor analysis. Edward Arnold, 1999.
- Seunggeun Lee, Fei Zou, and Fred A Wright. "Convergence and prediction of principal component scores in high-dimensional settings". In: *Annals of Statistics* 38.6 (2010), pp. 3605–3629.

Vladimir A Marchenko and Leonid A Pastur. "Distribution of eigenvalues for some sets of random matrices". In: *Mat. Sb.* 114.4 (1967), pp. 507–536.

N Patterson, AL Price, and D Reich. "Population structure and eigenanalysis". In: *PLoS Genet* 2.12 (2006), e190.

## References IV

Shayle R Searle, George Casella, and Charles E McCulloch. *Variance components*. John Wiley & Sons, 2009.

Andrey A Shabalin and Andrew B Nobel. "Reconstruction of a low-rank matrix in the presence of Gaussian noise". In: *Journal of Multivariate Analysis* 118 (2013), pp. 67–76.

Jean-Luc Starck, Fionn Murtagh, and Jalal M Fadili. Sparse image and signal processing: wavelets, curvelets, morphological diversity. Cambridge university press, 2010.

Madeleine Udell et al. "Generalized Low Rank Models". In: *Foundations and Trends in Machine Learning* 9.1 (2016), pp. 1–118.

### References V



L. T. Liu, E. Dobriban, and A. Singer. "ePCA: High Dimensional Exponential Family PCA". In: *ArXiv e-prints* (Nov. 2016). eprint: 1611.05550.

