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Principal Component Analysis (PCA)

PCA: useful tool for dimensionality reduction and data
analysis

Data X: n x p matrix (n samples from p-dimensional
population)

PC'’s: linear combinations of features explaining the most

variance

eigenvectors of sample covariance matrix X, = %XTX

corresponding eigenvalue ); is variance of PC;
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PCA in classical vs. high-dimensional regimes

Classical setting: p fixed, n — oo
» 3, — ¥ by the law of large numbers

High dimensional setting: p/n =~ € (0,00),p — 0o, n — 00
» Classical asymptotics don't apply. Original PCA is
inconsistent!

» Limiting spectrum: Marchenko-Pastur (MP) distribution
(Marchenko and Pastur 1967)

» Acute need to shrink empirical eigenvalues (Donoho et al.

2013)
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Motivating example for ePCA: XFEL

Particle stream %

Pulse monitor

X-ray beam

Diffraction pattern
recorded on a
pixellated detector

(a) 3D structure of a  (b) XFEL imaging process (Gaffney and Chapman
lysozyme 2007)

Figure: X-ray free electron laser (XFEL) molecular imaging
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Demo of ePCA on XFEL images

(a) Clean intensity (b) Noisy photon
maps counts

° |
(c) Denoised (PCA)  (d) Denoised (ePCA)
Figure: XFEL diffraction images (n = 70,000, p = 65, 536)
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PCA for the exponential family

In many applications Xj;'s have an exponential family distribution
» SNPs: Binomial
» RNA-seq: Negative Binomial
» XFEL/photon-limited imaging: low-intensity Poisson

Single-parameter exponential family distributions

Has density of the form  f(y) = expfy — A(6).

No commonly agreed upon version of PCA for non-Gaussian data
(Jolliffe 2002)
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A new method: ePCA

Deterministic 4-step algorithm using moments and shrinkage

Advantages compared to previous proposals

» Likelihood/generalized linear latent variable models (Collins
et al. 2001; Knott and Bartholomew 1999; Udell et al. 2016)

> lack of global convergence guarantees

» Gaussianizing transforms: wavelet, Anscombe (Anscombe
1948; Starck et al. 2010)

» unsuitable for low-intensity
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Problem formulation

Sampling model for Poisson

» Each p-dim latent vector is drawn i.i.d. from distribution D

— e.g., the noiseless image. i and X are the mean and
covariance of D.

» Observations Y; ~ Y € RP — e.g., the noisy image
» Model for Y: draw latent X € RP, then

Y =(Y(1),---,Y(p))" where Y(j) ~ Poisson(X(j))

Goal: Recover information about the original distribution D, i.e.
2. Recover X.



Problem formulation

Sampling model for Exponential family

» One-parameter exponential family with density
foly) = exp Oy — A(0)

Natural parameter 6, E[y] = A'(9), Var[y] = A”(6)
» Observations Y; ~ Y € RP
» Model for Y: draw latent 8 € RP, then

Y(5) 1 60) ~ fagy(y), Y = (Y1), Y(p))'

Goal: Recover ¥, := Cov(A'(9)) and X :=E(Y1]0) = A'(0)

10/35



Mean parameter is low-rank

Mean X = E(Y|€) has unknown low-dim structure
» as opposed to natural parameter 6
> can leverage Random Matrix Theory = simple method

» reasonable for image data (Basri and Jacobs 2003)
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Our sampling model is realistic

Two applications

1. XFEL images

‘ 2. Single cell RNA-seq

Sample la-
tent vector
X

Random 2D intensity
map due to random 3D
orientation of molecule

Random expression
rate due to biological
variation of cells

Sample Y ~
Poisson(X)

Noisy 2D image Y due
to low photon count

Noisy read counts Y
due to technical varia-
tion
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Summary of ePCA

ePCA can be seen as a sequence of improved covariance estimators

Table: Covariance estimators

Homogenization
Shrinkage

Heterogenization

Scaling

Sh= Dy ?S4D,

Shay = 1(Sh)

She = Di/*Sh., Di/?
Se=Sai00" (She=30:0:")

Name Formula Motivation
Sample covariance | S=137 (Yi—Y)(Yi-Y)" | -
Diagonal debiasing | Sy = S — diag[V(Y)] Hierarchy

Heteroskedasticity
High dimensionality
Heteroskedasticity
Heteroskedasticity
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Diagonally debiasing the sample covariance

Poisson case:
> Sample Mean Y, =137 Y,
Sample Covariance S = %27:1 (Yi=Yn) (Yi— Vn)T
But it's inconsistent! E[S] = X + diag[u]
D, := diag (7,,)
Diagonally debiased covariance Sy =S — D,

v

v

v

v
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Diagonally debiasing the sample covariance

Exponential family:

Cov[Y] = Cov[A/(0)] + Ediag[A”()] by law of total variance
» Mean-variance map:V/(y) = A"[(A))71(y)]

D, := diag[V(Y,)] estimates diag[A”(6)]

> Sd =S5-— Dn

v

v

Theorem (Convergence of the debiased covariance (Liu et al.
2016))

B1S0 ~ o) S /2 15+ me + ]

16
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Homogenization
> Motivation: Remove the effects of heteroskedasticity = closer
to standard spiked model (Johnstone 2001) + MP law
> Sp= D, *S4D, " = D, sp, M —

» Different from Standardization (dividing each measurement by
its empirical standard deviation)!

» -

=

» mo os 0s

N 0 0

o 0 TG R o TR ——

e o e A R

. . aeteew s ol

® w .

10 50 ! 1

s L

R S T S S B T S T T R o 2 4

40 150 03 ¥ =4, p=100 03 7 =4, p = 1000

° e e

0 0 0 0

P e o RN o] . ©
(a) Spectrum before homogenization (b) Spectrum after homogenization

with red MP density
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Marchenko-Pastur Law for ePCA
Theorem (Marchenko-Pastur Law (Liu et al. 2016))

» The eigenvalue distribution of S converges a.s. to general MP

[ i
> The eigenvalue distribution of S, 4 |, converges a.s. to the

standard MP with aspect ratio .

Importance of Homogenization and the MP law

» Use optimal eigenvalue shrinkers for covariance estimation
(Donoho et al. 2013; Lee et al. 2010)

» Improves signal strength (Liu et al. 2016)

» Matches Hardy-Weinberg equilibrium normalization
(Patterson et al. 2006)
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Eigenvalue shrinkage

» Reduce noise by shrinkage
» 7)(+) scalar shrinker, applied elementwise to eigenvalues:

M= VAVT; n(M) = Vi(AN)VT; Sh, = n(Sh)

» Optimal shrinkage functions (Donoho et al. 2013)

vy =1,p =100 v =1, p = 1000
> i s P > i s P
1 1
0 0
-2 0 2 4 -2 0 2 4 6
=4, p =100 =4, p = 1000
0.3 7 P 0.3 7 P
[ Debiased EV dist.
o True EV
0.2 0.2 e Top Debiased EV
0.1 0.1
0 0
0 5 10 15 20 0 5 10 15

Figure: Need to Shrink! Spiked model spectrum after homogenization
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Heterogenization

» Homogenized covariance matrix S, doesn't estimate the
original covariance matrix X! =- need to heterogenize by
multiplying back the estimated standard errors

> Improves eigenvector estimates

> Spe = Dy*- S, - DI
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Scaling

Heterogenization induces a bias in the eigenvalues (Liu et al. 2016)

> Need for final Scaling step to correct the bias
> 55 = Z&,‘\?,‘\?T (She = Z V,VT)

» Scaling function based on assuming a Gaussian spiked model
(Baik et al. 2005; Johnstone 2001)
> we conjecture the literature about phase transition also applies
to our model
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Denoising by EBLP

» Use standard strategy Empirical Best Linear Predictor (EBLP)
from random effects model (Searle et al. 2009). First we
estimate E[A”(6)] and X using ePCA. Then, estimate

X =%, [diag[fEA”(e)] + ix} 'Y, + diag[BA” (6)] [diag[fEA”(o)] + ix] Ty

» For the Poisson distribution,

X = S, (diag[V] + S5) Vi + diag[ V] (diag[ Y] + S5) V.



Illustration with X-ray molecular imaging
Experiments on simulated XFEL data
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Covariance estimation

3 Error of covariance estimation (Spectral norm, 50 trials) 44 Error of covariance estimation (F ius norm, 50 trials)
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Figure: Error of covariance matrix estimation: norm of the difference
between each successive covariance estimate (Sample, +Debiased,
+Heterogenized, +Scaled) and the true covariance X,.
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Eigenvalues

2000 Eigenvalue 5, (50 trials)
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Figure: Error of eigenvalue estimation for the top 5 eigenvalues,
measured as percentage error relative to the true eigenvalue

25/35



Eigenvectors

True Ei;

5 =0.25

Debiased Eigenimages

Sample Eigenimages

Figure: XFEL Eigenimages for v = 1/4, ordered by eigenvalue

DA
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Denoising comparison

EB linear predictor EB linear predictor Vanilla projection Vanilla projection
(Scaled Covariance) (Sample evec) (Heterogenized evec) (Sample evec), v =0.25
MSE = 0.000639 MSE = 0.0118 MSE = 0.00168 MSE = 0.00426

Figure: Sampled reconstructions using the XFEL dataset

ePCA EPCA (Collins et al) Standard PCA
MSE = 0.000845 MSE = 0.00128 MSE = 0.00303

Figure: Comparing various methods’ sampled reconstructions of the
XFEL dataset ePCA took 13.9 seconds, while (Collins et al. 2001)'’s
exponential family PCA took 10900 seconds, or 3 hours

N
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Denoising results

6 1073 MSE of denoising methods
\ == Vanilla projection (Sample evec)
====Vanilla projection (Recolored evec)
5 N\ |=—EBLP (Scaled covariance)
4
o
< 3
2
1
0 L . . .
2.5 3 3.5 4 4.5 5

log(n)

Figure: MSE against logl0 sample size. Mean over 50 Monte Carlo trials.
Purple: PCA. Grey: ePCA (projection only). Green: ePCA +EBLP
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Software

» ePCA is publicly available in an open-source Matlab

implementation from github.com/lydiatliu/epca/
> Link to ePCA main function
> eg. [cov,”,”,”,7,eigval,eigvec,”,”, ]

= exp_fam_pca(data, ’poisson’)
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github.com/lydiatliu/epca/
https://github.com/lydiatliu/epca/blob/master/software/exp_fam_pca.m

Summary

1. New method ePCA for PCA of exponential family data, based
on a new covariance estimator.

2. Homogenization, shrinkage, heterogenization, and scaling of
the debiased covariance matrix improve performance for
high-dimensional data. Each step has theoretical justifications.

3. Applied ePCA to simulated XFEL data = reduce the MSE for
covariance, eigenvalue, eigenvector estimation.

4. Used ePCA to develop new denoising method, a form of
empirical Best Linear Predictor (EBLP) from random effects
models. Demonstrate on simulated XFEL data.
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