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“21 definitions of fairness” [Narayanan 2018] 

1. demographic Parity 

2. Equality of Opportunity 

3. Predictive value parity 

4. Group Calibration

Machine learning 
systems are “fair”

Protected groups 
are “better off”
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WHAT HAPPENED?
Fairness criteria didn’t seem to help the protected group,  

once we considered the impact of loans on scores.
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OUR WORK
1. Introduce the “outcome curve”, a tool for 

comparing the delayed impact of fairness 
criteria

2. Provide a complete characterization of the 
delayed impact of 3 different fairness criteria

3. Show that fairness constraints may cause 
harm to groups they intended to protect
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SCORE DISTRIBUTION WITHIN A GROUP
➤ A score R(X) is a scalar random variable that is a function of an individual’s features X 

➤ e.g. credit score is an integer from 300 to 850

➤ Any group of individuals has a particular distribution over scores:

➤ Each score corresponds to an individual’s success probability (e.g. probability of repaying 
a loan) once accepted

➤ Monotonicity assumption: Higher scores implies more likely to repay

Scores

Would Repay

Would Not Repay

Would repay

Would not repay

P{R = r}
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MODEL DELAYED IMPACT ON GROUPS
➤ Scores of accepted individuals change depending on their success.  

➤ The average change in score of each group is the delayed impact:

Rnew =

(
Rold + c+ if repaid
Rold + c� if defaulted

Dµ = E[Rnew � Rold]
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Theorem 1 [All outcome regimes are possible] 

Equal opportunity and demographic parity may cause relative improvement, 
relative harm, or active harm. 

➤ unconstrained utility maximization never causes active harm.
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➤ Use empirical data labeled by race (“white” and “black”) to estimate group score 
distributions, repayment probabilities, and relative sizes
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➤ 300,000+ TransUnion TransRisk scores from 2003

➤ Scores range from 300 to 850 and are meant to predict default risk

What we did

➤ Use empirical data labeled by race (“white” and “black”) to estimate group score 
distributions, repayment probabilities, and relative sizes

➤ Model the bank’s profit/loss ratio, e.g. +1:-4

➤ Model the delayed impact of repayment/default  
on credit score, e.g. +75/-150

➤ Compute “outcome curves” and delayed impact  
under different fairness criteria
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in delayed impact?

Maxima of outcome and 
utility curves under 
fairness criteria are more 
misaligned in the 
minority “black” group
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➤ Need for domain-specific models of delayed impact 
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FUTURE WORK
➤ Moving beyond binary decisions

➤ Moving beyond the mean score as measure of impact

➤ Dynamics of the distributional impact of machine learning algorithms 
[Ensign et al. 2017; Hu and Chen 2017; Hashimoto et al. 2018]
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