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Fairness criteria didn’t seem to help the protected group,

once we considered the impact of loans on scores.
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OUR WORK

Introduce the “outcome curve”, a tool tor
comparing the delayed impact of fairness
criteria

Provide a complete characterization of the
delayed impact of 3 different fairness criteria

. Show that fairness constraints may cause

harm to groups they intended to protect
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Why the large difference
in delayed impact?

Maxima of outcome and
utility curves under
fairness criteria are more
misaligned in the
minority “black” group
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DISCUSSION

» Outcome curves provide a way to deviate from maximum utility while improving

outcomes.

» Need tfor domain-specific models ot delayed impact

» Context-sensitive nature of fairness in machine learning

FUTURE WORK

» Moving beyond binary decisions
» Moving beyond the mean score as measure of impact

» Dynamics of the distributional impact of machine learning algorithms
[Ensign et al. 2017; Hu and Chen 2017; Hashimoto et al. 2018]
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