THE IMPLICIT FAIRNESS CRITERION OF UNCONSTRAINED LEARNING

Lydia T. Liu (UC Berkeley)

Joint work with Max Simchowitz and Moritz Hardt

- Expert at Fetch
- Expert at PyTorch

You're Hired!

$$X \in \mathcal{X}$$
 feature space

Resume

Ads

Movies

$$Y \in \{0,1\}$$
 outcome

Hiring Decision

User clicks

User likes

Learn a score function f(X) that is "close" to Y

$$f^{U}(x) = \mathbb{E}[Y \mid X = x]$$

Optimal score—minimizes MSE (also other losses) for each x

$$f^{U}(x) = \mathbb{E}[Y \mid X = x]$$

satisfies

Calibration

$$\mathbb{E}[Y \mid f(X) = c] = c$$

[Cox, 1958, Murphy and Winkler, 1977, Dawid, 1982, DeGroot and Fienberg, 1983, Platt, 1999, Zadrozny and Elkan, 2001, Niculescu-Mizil and Caruana, 2005]

Score function corresponds to probability that Y=1

Application:
proposed as
criterion for
fairness when
A is a group

Calibration w.r.t. A

 $\mathbb{E}[Y \mid f(X) = c, A = a] = c$

Consider
$$A$$
, an attribute that may or may be in X

$$\mathbb{E}[Y \mid f(X) = c] = c$$

Calibration

GROUP CALIBRATION

$$\mathbb{E}[Y \mid f(X) = c, A = a] = c$$
 Calibration w.r.t. A

e.g. A is race

GROUP CALIBRATION

$$\mathbb{E}[Y \mid f(X) = c, A = a] = c$$
 Calibration w.r.t. A

The Calibrated Bayes Score

$$f^B(x,a) = \mathbb{E}[Y \mid X = x, A = a]$$

satisfies Calibration w.r.t. A

$$\mathbb{E}[Y \mid f^B(X, A), A] = f^B(X, A)$$

"Status Quo": Empirical Risk Minimization (ERM)

- 1. Specify a model class ${\mathcal F}$
- 2. Learn a score function $\hat{f} \in \mathcal{F}$ that minimizes prediction loss over data $(X_i, Y_i)_{i=1}^n$ X may not contain A

 \mathbf{Q} : When is ERM calibrated w.r.t. \mathbf{A} ?

THIS WORK

Unconstrained machine learning via ERM is a simple recipe for achieving group calibration w.r.t. A, provided that

- 1. the function class \mathcal{F} is sufficiently rich,
- 2. there are enough training samples, and
- 3. the available features X can approximately capture the group attribute A for purposes of predicting Y

RESULT: UPPER BOUND ON CALIBRATION GAP

➤ Calibration gap of score f

$$\mathbf{cal}_f(A) := \mathbb{E}\left[|f(X) - \mathbb{E}[Y \mid f(X), A]|\right]$$

➤ Consider a loss function $\ell = \ell(f(X), Y)$ (e.g. square or logistic loss). The **risk** of the score is the average loss over the population distribution:

$$\mathcal{L}(f) = \mathbb{E}[\ell(f(X), Y)]$$

> Our main result relates the calibration gap of a score to its *excess* risk compared to the Calibrated Bayes Score $f^B(x,a) = \mathbb{E}[Y \mid X = x, A = a]$

$$\mathcal{L}^* = \mathbb{E}[\ell(f^B(X, A), Y)]$$

Calibrated Bayes Risk

RESULT: UPPER BOUND ON CALIBRATION GAP

➤ Theorem 1. For a broad class of loss functions that includes the square loss and logistic loss, we have

$$\mathbf{cal}_f(extbf{A}) \leq \mathcal{O}\left(\sqrt{\mathcal{L}(f) - \mathcal{L}^*}
ight)$$

- \blacktriangleright Big O for constants that depend only on the loss function ℓ
- ➤ Corresponding **lower bound** shows that the square-root relationship between excess risk and **calibration** gap is tight in the worst case.
- ➤ Any score with **small excess risk** over the calibrated Bayes risk will be well-calibrated with respect to the group attribute *A*

IMPLICATIONS OF THEOREM 1

- ➤ Given a dataset of size *n* sampled from the population distribution, a natural strategy for achieving group **calibration** is
 - \succ the unconstrained empirical risk minimization (ERM) over a model class $\mathcal F$

$$\hat{f}_n \in \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(X_i), Y_i)$$
.

The risk of \hat{f}_n converges in probability to the least risk of any score function in the class, $\min_{f \in \mathcal{F}} \mathcal{L}(f)$.

IMPLICATIONS OF THEOREM 1

- ➤ It is possible for ERM to attain small excess risk relative to the calibrated Bayes risk even if the group attribute *A* is **not** in the training dataset.
- ➤ **Example.** Let $\ell(z,y) := (z-y)^2$ denote the square loss. Then we can decompose the excess risk as follows

EXPERIMENTS ON UCI ADULT

- ➤ 14 features, 48842 individuals, predict if annual income > \$50,000
- ➤ Observation 1: ERM score is close to calibrated by group even when trained without the group attribute

EXPERIMENTS ON FLORIDA PRETRIAL DEFENDANTS DATASET Angwin et al (2017)

- > 7 features, 7214 individuals, predict 2-year recidivism
- ➤ Observation 1: ERM score is close to calibrated by group even when trained without the group attribute. Or there is insufficient data to decide.

EXPERIMENTS ON UCI ADULT

➤ Observation 2: ERM score is simultaneously calibrated w.r.t. many group attributes including those defined post-hoc

TRADEOFFS WITH OTHER FAIRNESS CRITERIA

- \succ Calibration has been suggested as a fairness criterion when A is a sensitive attribute [Kleinberg et al. 2016; Chouldechova, 2017].
- > Other notions of group fairness include separation (aka equalized odds):

$$\mathbb{E}[f \mid A, Y] = \mathbb{E}[f \mid Y]$$

- "Mean score for individuals with positive (negative) outcomes is same across groups"
- ➤ Separation gap: $sep_f(A) := \mathbb{E}[|\mathbb{E}[f \mid A, Y] \mathbb{E}[f \mid Y]|]$
- ➤ Lower bound (details in paper) shows that unconstrained ERM necessarily has a large separation gap that is problem-dependent

EXPERIMENTS ON UCI ADULT

➤ Observation 3: Calibration gap decreases to 0 as we increase the number of training examples. Separation gap does not.

LESSONS LEARNT

- ➤ Approximate group **calibration** is satisfied with unconstrained ERM without needing active intervention.
- ➤ Enforcing group calibration does not require any departure from unconstrained machine learning, which largely describes current practice.
- > When should we be fine with group calibration as a normative fairness goal?
 - > only if we're happy with unconstrained machine learning
 - ➤ harms of unconstrained machine learning [Crawford, 2013; Barocas and Selbst, 2016; Crawford, 2017]
- ➤ Practitioners hoping to deviate from current practice will not achieve this goal by asking for **calibration** alone.

THANK YOU

For more details and experiments, see full version: https://arxiv.org/abs/1808.10013

