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A TYPICAL APPLICATION OF MACHINE LEARNING TODAY

You're Hired!
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X, €X Y, €4{0,1}

Learn a score function f(X) that is “close” to Y

Optimal score—minimizes MSE

(also other losses) for each x



A TYPICAL APPLICATION OF MACHINE LEARNING TODAY

[Cox, 1958, Murphy and
Calibration Winkler, 1977, Dawid,
1982, DeGroot and
Fienberg, 1983, Platt,
1999, Zadrozny and
C] — C Elkan, 2001, Niculescu-
Mizil and Caruana, 2005]

Score function corresponds to probability that Y = 1



A TYPICAL APPLICATION OF MACHINE LEARNING TODAY

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Application:
proposed as
criterion for

fairness Wheﬂ X@ c X
A Is a group
Calibration w.r.t. A Calibration
[V [ f(X)=c,A=al=c  E[Y|f(X)=d=c

ConsmlerA an attribute that
may or may be in X |




GROUP CALIBRATION

Population

Calibration without group

e.g. A is race




GROUP CALIBRATION

The Calibrated Bayes Score

fP(xz,a)=E[Y | X =2, A = (]

satisfies Calibration w.r.t. A

Y | fP(X,A), A] = f7(X, A)




TYPICAL APPLICATION OF MACHINE LEARNING TODAY
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A form ot
unconstrained
machine learning
(ho constraints

based on A)

/

“Status Quo"”: Empirical Risk Minimization (ERM)

X, e X

1. Specify a model class JF

2. Learn a score function f € JF that minimizes prediction

n
loss over data (Xza sz')r,;:l X may not contain A

Q: When is ERM calibrated w.r.t. A?



THIS WORK

Unconstrained machine learning via ERM is a simple recipe for
achieving group calibration w.r.t. A, provided that

1. the function class F is sufficiently rich,

2. there are enough training samples, and

3. the available features X can approximately capture the group
attribute A for purposes of predicting Y



RESULI: UPPER BOUND ON CALIBRATION GAP
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» Calibration gap of score f

caly(A) :=E

L , -

» Consider a loss function ¢ ={(f(X),Y) (e.g. square or logistic loss).
The risk of the score is the average loss over the population distribution:

Y W
» Our main result relates the calibration gap of a score to its excess risk compared to
the Calibrated Bayes Score f“(z,a) =E[Y | X =2, A = d]

L7 = 43[5(1619()(, A),Y) ﬂ Calibrated Bayes Risk
| o %’

10



RESULI: UPPER BOUND ON CALIBRATION GAP

» Theorem 1. For a broad class of loss functions that includes the square loss ana
logistic loss, we have

caly(4)|< 0 (VL) - £)

» Big O for constants that depend only on the loss function ¢

» Corresponding lower bound shows that the square-root relationship between
excess risk and calibration gap is tight in the worst case.

» Any score with small excess risk over the calibrated Bayes risk will be well-
calibrated with respect to the group attribute A
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IMPLICATIONS OF THEOREM 1

> Given a dataset of size n sampled from the population distribution, a natural strategy
for achieving group calibration is

» the unconstrained empirical risk minimization (ERM) over a model class F

f € argmm—ZZ

feF n “

> The risk of f. converges in probability to the least risk of any score function in the

class, fffmjf_l L(f).
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IMPLICATIONS OF THEOREM 1

> |t is possible for ERM to attain small excess risk relative to the calibrated Bayes risk
even if the group attribute A is not in the training dataset.

» Example. Let 4(z,y) := (2 — y)” denote the square loss. Then we can decompose
the excess risk as follows

£(f)— £ = (£F) ~ min £9) ) + (min£07) - £(%)) + Ex[Vara[£ | X
|

Conditional variance of
fB given X; 0 if X

vanishes at 1/4/n flexibility of the

rate by ERM function class
captures all necessary

Information about A
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EXPERIMENTS ON UCI ADULT

> 14 features, 48842 individuals, predict if annual income > $50,000

» Observation 1: ERM score is close to calibrated by group even when trainea
without the group attribute
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EXPERIMENTS ON FLORIDA PRETRIAL DEFENDANTS DATASET  Angwin et al (2017)

> / features, 7214 individuals, predict 2-year recidivism

» Observation 1: ERM score is close to calibrated by group even when trainea
without the group attribute. Or there is insufficient data to decide.

Calibration for race Calibration for sex
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EXPERIMENTS ON UCI ADULT

» Observation 2: ERM score is simultaneously calibrated w.r.t. many group attributes
including those defined post-hoc

1o Calibration for Age . D.6*Age+0.4*Education-Num , 9-3*Hours per week+0.7*Age Lo Sex x Race
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TRADEOFFS WITH OTHER FAIRNESS CRITERIA

» Calibration has been suggested as a fairness criterion when A is a sensitive attribute
[Kleinberg et al. 2016; Chouldechova, 2017].

» Other notions of group fairness include separation (aka equalized odds):

“|f1 A Y] =E[fIY]

» “Mean score for individuals with positive (negative) outcomes is same across
groups”

» Separation gap: sepdA) :=E[|E[fI A, Y] - E[f I Y]|]

» Lower bound (details in paper) shows that unconstrained ERM necessarily has a
large separation gap that is problem-dependent
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EXPERIMENTS ON UCI ADULT

» Observation 3: Calibration gap decreases to O as we increase the number of
training examples. Separation gap does not.

Sufficiency and Learning curve

0.175 -
Calibration by gender L 0.9
0.150 4 | === Separation by gender
o - 0.8
S 0.125 - |
S
2 0.100 - - 0.7
o 4
§ 0075 - - 0.6 -
>
2 0.050 - - 0.5
Q
O i
t::; 0.025 - 0.4
7 0.000
’ | - 0.3

0 2500 5000 7500 10000
Training examples



LESSONS LEARNT

» Approximate group calibration is satisfied with unconstrained ERM without
needing active intervention.

» Enforcing group calibration does not require any departure from unconstrainec
machine learning, which largely describes current practice.

» When should we be tfine with group calibration as a normative fairness goal?

» only if we're happy with unconstrained machine learning

» harms of unconstrained machine learning [Crawford, 2013; Barocas and Selbst,
2016:; Crawtord, 20171

» Practitioners hoping to deviate from current practice will not achieve this goal by
asking for calibration alone.
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