The *Disparate Equilibria* of Algorithmic Decision Making when Individuals Invest Rationally

Lydia T. Liu*◇, Ashia Wilson⁺, Nika Haghtalab*☉, Adam Tauman Kalai⁺, Christian Borgs*◇, Jennifer Chayes*◇

*Work done at Microsoft Research ◇University of California, Berkeley +Microsoft Research ◇Cornell University

Machine learning models are being trained and used to make decisions about people, allocating resources and opportunities.

People tend to *change* their behavior in response to how these decisions are made.

Humans responding to algorithms

Pros

- Algorithms can incentivize humans to take "improving" actions over "gaming" actions [KR19]
- Algorithm rewards people appropriately, encouraging them to pursue beneficial investments, e.g. acquiring job skills, preparing for college [CL93, this work]

Cons

- People strategically change their features to game the algorithm [HMPW16, HIV19, MMDM19]
- Algorithms fail to reward certain groups, discouraging them from making beneficial investments [CL93, this work]
 - There is heterogeneity across groups leading to different responses
 [this work]

Under these dynamics...

- 2. What kind of **interventions** produce desirable equilibria?

1. What kind of long-term outcomes (equilibria) are produced?

Model for individual investment

- Given the current hiring policy, should I invest in acquiring job skills (become Y = 1) if
 - It costs me **C** to do that
 - I will develop features (e.g. resume, scores) that depend on my group A and this boosts my chances of being hired by $\beta(A)$
- I will invest in job skills if and only if my expected gain > 0.
- Individual-level decisions determine the overall qualification rate in each group.

- Y
- SkilledNot Skilled

Model for institution's response

- Accepting skilled individuals is a gain, accepting unskilled individuals is a loss.
- Picks current hiring policy
 - out of a chosen model class (e.g. linear models on observable features)
 - to maximize its *expected profit*, which depends on the **qualification rates** in each group.

eventually qualification rates stabilize reached equilibrium!

Y

O Skilled Not Skilled

What ensures "good" equilibria?

<u>Result</u>: If there exists a **zero-error** hiring policy in the model class, there is a unique (non-trivial) equilibrium.

- optimal qualification rate.
- This also holds approximately if there exists a low-error hiring policy.

• All groups have the same qualification rate at equilibrium. This is also the

Challenge: Heterogeneity across groups

- There exists a **zero-error** hiring policy for each group separately but not together.
- <u>Result</u>: Then 2 types of equilibria exist
 - 1. Only one group has the optimal qualification rate (unbalanced) — Stable
 - 2. Both groups have the same qualification rate — Unstable
- Almost never converge to a "balanced" long term outcome, even if you started close to one!

Balanced but unstable

- Long-term effectiveness of **interventions** depends on the dynamics
 - **Decoupling** the hiring policy by group: helps in the static setting, but not 1. necessarily in the dynamic setting
 - 2. **Subsidizing** the cost of investment in a disadvantaged group
- (More details in paper!)
- Algorithms and re-training impact human decisions beyond their intended scope
 - Principled view of how feedback loops arise and implications for system design more work is needed!

The Disparate Equilibria of Algorithmic Decision Making when Individuals Invest Rationally

Thank you!

Nika Haghtalab

Adam Kalai

Christian Borgs

Jennifer Chayes