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Background

Many consequential decisions are based on relative, not
absolute, measures of quality
•The literature on algorithmic fairness and strategic behavior [e.g.

1, 2, 3] has focused on classification; constrained allocation and

ranking (e.g. college admissions) has received little attention.

Strategic and fairness considerations are relevant in the
design of rankings, but not well understood

•Strategic individuals may exert effort to influence their rankings,

depending on rewards.

•Different groups of individuals may have different returns to effort.

Main Contributions

•We study strategic ranking, where an applicant’s reward
depends on their post-effort rank in a measured score.

•We illustrate the equilibrium behavior that results from com-
petition among applicants, and show how ranking reward de-

signs trade off applicant, school, and societal utility.

•Randomization in the ranking reward design can mitigate two

measures of disparate impact: welfare gap and access.

Model

Applicants Unit mass, indexed by ω ∈ [0, 1] distributed uniformly.

Latent skill rank. unobserved θpre = θpre(ω) ∈ [0, 1]. Skill of ap-

plicant is f (θpre), where f strictly increasing, continuous.

Effort and Score. Applicant chooses effort level e ≥ 0. The result

is an observed, post-effort score, v = v(e, θpre) = g(e)·f (θpre). The

effort transfer function g is continuous, concave, strictly increasing

(marginal effort improves one’s score but has diminishing returns).
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Model - continued

Post effort rank. Each applicant is ranked according to their

score v , resulting in a post-effort rank θpost.

School. Admits applicants, according to ranking reward func-

tion λ : [0, 1] 7→ [0, 1], s.t. an applicant with post-effort rank

θpost is admitted with probability λ(θpost). λ is non-decreasing

and the school has a capacity constraint, i.e., E[λ(θpost)] = ρ.

Individual applicant welfare. Given the designer’s function

λ and the effort levels of other applicants, each applicant

chooses effort e to maximize their individual welfare,

W (e, λ(θpost)) = λ(θpost)− p(e).

where p is non-negative, continuous, and strictly convex.

Equilibrium. After a school chooses its ranking reward func-

tion λ, an equilibrium of effort levels is an assignment

θpre 7→ e(θpre) of effort levels and resulting post-effort ranks

θpost(θpre(ω)) in which given the efforts of other applicants, no

applicant can increase their welfare by changing their effort.

Equilibrium characterization

•Rank preservation: In every equilibrium, λ(θpost(θpre)) =

λ(θpre), up to sets of measure 0.

•Second price effort: Each applicant exerts just enough effort

that applicants in the level below (of pre-effort rank) cannot

increase welfare by exerting additional effort (cf. [4] and [5])
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Main Results

Tradeoffs in aggregate welfare and utility

Applicant welfare. W := E[W (e, λ(θpost))] = ρ−E[p(e)]

Societal utility. U soc := E[v]

Private utility. Upri := E[v · λ(θpost)]

Two-level policy.Parameterized by cut-off c ∈ (0, 1− ρ],

an applicant with post-effort rank θpost ≥ c is admitted

with probability `1 = ρ
1−c > 0. All others are rejected.

Lower c = more randomized admissions.

Result. In the class of two-level policies,W is decreasing

with c. Upri is increasing with c. U soc may be maximized

at c ∈ (0, 1− ρ).

Environment difference and structural inequality

Suppose there are now two groups, A,B with environment

factors γA > γB > 0. Favorable environment results
in higher return to effort: v = γ · g(e) · f (θpre)

LetWG(θpre) denote post-effort welfare of a applicant with

latent skill ranking θpre from group G ∈ {A,B}, i.e.,

WG(θpre) := λ(θpost(θpre, γG))− p(e(θpre, γG)).

Welfare gap. G(θpre) :=WA(θpre)−WB(θpre).

Result. In the class of two-level policies, G(θpre) is strictly

decreasing with c for all θpre above a threshold.


